SPECTRA OF Sol-MANIFOLDS: ARITHMETIC AND QUANTUM MONODROMY

نویسنده

  • A. V. BOLSINOV
چکیده

The spectral problem of the three-dimensional manifolds M3 A admitting Sol-geometry in Thurston’s sense is investigated. Topologically M3 A are the torus bundles over a circle with a hyperbolic glueing map A. The eigenfunctions of the corresponding Laplace-Beltrami operators are described in terms of the modified Mathieu functions. It is shown that the multiplicities of the eigenvalues do not depend on the parameters in the metric and are directly related to the number of representations of an integer by a given indefinite binary quadratic form. The quantum monodromy phenomenon for the corresponding quantum system is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chern-simons Theory, Analytic Continuation and Arithmetic

The purpose of the paper is to introduce some conjectures regarding the analytic continuation and the arithmetic properties of quantum invariants of knotted objects. More precisely, we package the perturbative and nonperturbative invariants of knots and 3-manifolds into two power series of type P and NP, convergent in a neighborhood of zero, and we postulate their arithmetic resurgence. By the ...

متن کامل

The Behaviour of Eigenstates of Arithmetic Hyperbolic Manifolds

In this paper we study some problems arising from the theory of Quantum Chaos, in the context of arithmetic hyperbolic manifolds. We show that there is no strong localization ("scarring") onto totally geodesic submanifolds. Arithmetic examples are given, which show that the random wave model for eigenstates does not apply universally in 3 degrees of freedom.

متن کامل

Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds

Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are LDPC codes with linear rate and distance n. Their rate is evaluated via Euler characteristic arguments and their distance using Z2-systolic geometry. This construction answers a queston of Zémor [Z], who asked whether homological codes with such parameters could exist ...

متن کامل

ar X iv : 1 31 0 . 55 55 v 1 [ m at h . D G ] 2 1 O ct 2 01 3 QUANTUM ERROR CORRECTING CODES AND 4 - DIMENSIONAL ARITHMETIC HYPERBOLIC MANIFOLDS

Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are LDPC codes with linear rate and distance n. Their rate is evaluated via Euler characteristic arguments and their distance using Z2-systolic geometry. This construction answers a queston of Zémor [Z], who asked whether homological codes with such parameters could exist ...

متن کامل

Novel Subtractor Design Based on Quantum-Dot Cellular Automata (QCA) Nanotechnology

Quantum-dot cellular automaton (QCA) is a novel nanotechnology with a very different computational method in compared with CMOS, whereas placement of electrons in cells indicates digital information. This nanotechnology with specifications such as fast speed, high parallel processing, small area, low power consumption and higher switching frequency becomes a promising candidate for CMOS tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005